BDNF and NT-4/5 exert neurotrophic influences on injured adult spinal motor neurons.
نویسندگان
چکیده
Adult motor neurons, like their immature antecedents, express the mRNA for the signaling receptor for brain-derived neurotrophic factor (BDNF) and for neurotrophin-4/5 (NT-4/5). However, while both BDNF and NT-4/5 support the survival of axotomized developing spinal motor neurons in vitro or in vivo, it is not known whether these factors continue to influence spinal motor neurons in adulthood. The present study tests if BDNF or NT-4/5 modulate the reactive responses of adult spinal motor neurons to nerve injury. We utilize sciatic nerve transection to axotomize the spinal motor neurons that form the retrodorsal lateral nucleus (RDLN) and show that, after axotomy, RDLN motor neurons lose ChAT immunoreactivity and also reexpress p75Ingfr, the low affinity receptor for all neurotrophin family members. Treatment with BDNF or NT-4/5 alters these effects of sciatic nerve transection. Both BDNF and NT-4/5 attenuate the loss of ChAT expression in axotomized RDLN motor neurons; thus, as compared to vehicle treatments, BDNF and NT-4/5 produce statistically significant increases in the optical density of ChAT immunostaining. Furthermore, BDNF and NT-4/5 also significantly increase the RDLN reexpression of p75Ingfr after sciatic nerve transection. Interestingly, essentially identical increases in RDLN ChAT and p75Ingfr immunostaining are produced by sciatic nerve crush injuries in the absence of exogenous neurotrophin treatment. These data show that treatment with exogenous BDNF and NT-4/5 changes the response of adult spinal motor neurons to sciatic nerve transection. Furthermore, these neurotrophins elicit reactive responses in axotomized motor neurons that mimic those produced by endogenous agents in regenerating crushed peripheral nerve.
منابع مشابه
Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the adult rat spinal cord: regulation by the glutamate receptor agonist kainic acid.
Previous in vitro studies indicate that select members of the neurotrophin gene family, namely brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), contribute to survival and differentiation of spinal cord motoneurons. To investigate the potential roles of these factors in the adult spinal cord, we examined their cellular localization and regulation af...
متن کاملInjury-Associated PACAP Expression in Rat Sensory and Motor Neurons Is Induced by Endogenous BDNF
Peripheral nerve injury results in dramatic upregulation in pituitary adenylate cyclase activating polypeptide (PACAP) expression in adult rat dorsal root ganglia and spinal motor neurons mirroring that described for the neurotrophin brain derived neurotrophic factor (BDNF). Thus, we posited that injury-associated alterations in BDNF expression regulate the changes in PACAP expression observed ...
متن کاملBDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats.
Although regeneration of injured axons is inhibited within the adult CNS, moderate recovery can be found in patients and animals with incomplete spinal cord injury (SCI). This can be partly attributed to sprouting of spared and injured axons, rostral and caudal to the lesion, respectively. Recently, it has been reported that following a thoracic SCI such sprouting can result in indirect reconne...
متن کاملNeuroprotective effect of sonic hedgehog up-regulated in Schwann cells following sciatic nerve injury.
The physiological roles of sonic hedgehog (Shh) have been intensively characterized in development of various organs. However, their functions in adult tissues have not been fully elucidated. We investigated the expression and the potential function of Shh in crush-injured adult rat sciatic nerves. The Shh expression was up-regulated in Schwann cells adjacent to the injured site. The time-cours...
متن کاملTargeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury
Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 2 شماره
صفحات -
تاریخ انتشار 1995